Рубрики
Трансплантация

Выращивание органов человека для пересадки: достижения и перспектива, стволовые клетки выращивание органов для трансплантации

Выращивание органов человека для пересадки: достижения и перспектива

Постиндустриальные темпы развития человечества, а именно науки и техники, велики настолько, что их невозможно было представить еще 100 лет назад. То, о чем раньше можно было прочитать только в научно-популярной фантастике, теперь появилось и в реальном мире.

Уровень развития медицины 21-го века выше, чем когда-либо. Заболевания, считавшиеся смертельно опасными раньше, в наши дни успешно лечатся. Однако еще не решены проблемы онкологии, СПИДа и множества других заболеваний. К счастью, в ближайшем будущем для этих проблем найдется решение, одним из которых послужит выращивание органов человека.

Основы биоинженерии

Наука, использующая информационный базис биологии и пользующаяся аналитическим и синтетическим методами для решения своих задач, зародилась не так давно. В отличие от обычной инженерии, которая для своей деятельности применяет технические науки, по большей части математику и физику, биоинженерия идет дальше и пускает в ход инновационные методы в виде молекулярной биологии.

Одной из главных задач новоиспеченной научно-технической сферы является выращивание искусственных органов в лабораторных условиях с целью их дальнейшей пересадки в тело пациента, у которого отказал из-за повреждения или в силу изношенности тот или иной орган. Опираясь на трехмерные клеточные структуры, ученые смогли продвинуться в изучении влияния различных болезней и вирусов на деятельность человеческих органов.

К сожалению, пока это не полноценные органы, а лишь органоиды – зачатки, незаконченная совокупность клеток и тканей, которые можно использовать только в качестве экспериментальных образцов. Их работоспособность и уживчивость проверяются на подопытных животных, в основном, на разных грызунах.

Историческая справка. Трансплантология

Росту биоинженерии как науки предшествовал долгий период развития биологии и других наук, целью которых было изучение человеческого тела. Еще в начале 20-го века толчок своему развитию получила трансплантология, задачей которой было изучение возможности пересадки органа донора другому человеку. Создание методик, способных консервировать на некоторое время донорские органы, а также наличие опыта и детальных планов по трансплантации позволили хирургам со всего мира в конце 60-х годов успешно пересадить такие органы, как сердце, легкие, почки.

На данный момент принцип трансплантации является наиболее действенным в случае, если пациенту угрожает смертельная опасность. Основная проблема заключается в остром дефиците донорских органов. Больные могут годами ждать своей очереди, так ее и не дождавшись. Кроме того, существует высокий риск того, что пересаженный донорский орган может не прижиться в теле реципиента, так как иммунной системой пациента он будет рассматриваться в качестве инородного предмета. В противоборство данному явлению были изобретены иммунодепрессанты, которые, однако, скорее калечат, чем лечат – иммунитет человека катастрофически ослабевает.

Преимущества искусственного создания над трансплантацией

Одно из главных конкурентных отличий метода выращивания органов от их пересадки от донора заключается в том, что в лабораторных условиях органы могут производиться на основе тканей и клеток будущего реципиента. В основном, используются стволовые клетки, обладающие способностью дифференцироваться в клетки определенных тканей. Данный процесс ученый способен контролировать извне, что существенно снижает риск будущего отторжения органа иммунной системой человека.

Более того, с помощью метода искусственного выращивания органов можно производить их неограниченное количество, тем самым удовлетворяя жизненно важные потребности миллионов людей. Принцип массового производства значительно снизит цены на органы, спасая миллионы жизней и значительно увеличивая выживаемость человека и отодвигая дату его биологической смерти.

Достижения биоинженерии

На сегодняшний день ученые в состоянии выращивать зачатки будущих органов – органоиды, на которых испытывают различные болезни, вирусы и инфекции с целью проследить процесс заражения и разработать тактику противодействия. Успешность функционирования органоидов проверяют посредством их трансплантации в тела животных: кроликов, мышей.

Стоит также отметить, что биоинженерия достигла определенных успехов в создании полноценных тканей и даже в выращивании органов из стволовых клеток, которые, к сожалению, пока невозможно пересадить человеку в силу их неработоспособности. Однако на данный момент ученые научились создавать искусственным путем хрящи, сосуды и другие соединительные элементы.

Кожа да кости

Не так давно у ученых Колумбийского университета получилось создать фрагмент кости, по структуре схожий с суставом нижней челюсти, соединяющим ее с основанием черепа. Фрагмент был получен посредством использования стволовых клеток, как и при выращивании органов. Чуть позже израильской компании Bonus BioGroup удалось изобрести новый метод воссоздания человеческой кости, который был с успехом испробован на грызуне – искусственно выращенная кость была пересажена в одну из его лап. В данном случае опять же были использованы стволовые клетки, только получены они были из жировой ткани пациента и в последующем помещены на гелеобразный каркас кости.

Начиная с 2000-х годов, для лечения ожогов доктора применяют специализированные гидрогели и методы естественной регенерации поврежденных участков кожи. Современные же экспериментальные методики позволяют вылечивать сильнейшие ожоги за несколько дней. Так называемый Skin Gun распыляет особую смесь со стволовыми клетками пациента на поврежденную поверхность. Также наблюдаются крупные успехи в создании стабильно функционирующей кожи с кровеносными и лимфатическими сосудами.

Выращивание органов из клеток

Недавно ученым из Мичигана удалось вырастить в лабораторных условиях часть мышечной ткани, которая, правда, вдвое слабее оригинальной. Точно так же ученые в Огайо создали трехмерные ткани желудка, которые были в состоянии производить все необходимые для пищеварения ферменты.

Японские же ученые совершили почти невозможное – вырастили полностью функционирующий человеческий глаз. Проблема трансплантации заключается в том, что присоединить зрительный нерв глаза к головному мозгу пока не представляется возможным. В Техасе искусственным путем в биореакторе удалось также вырастить легкие, но без кровеносных сосудов, что ставит под сомнение их работоспособность.

Перспективы развития

Совсем недолго осталось до того момента в истории, когда человеку можно будет пересадить большинство органов и тканей, созданных в искусственных условиях. Уже сейчас ученые со всего мира располагают разработками проектов, экспериментальными образцами, некоторые из которых не уступают оригиналам. Кожу, зубы, кости, все внутренние органы по прошествии некоторого времени можно будет создавать в лабораториях и продавать нуждающимся людям.

Новые технологии также ускоряют развитие биоинженерии. 3D-печать, получившая распространение во многих сферах человеческой жизни, будет полезной и в рамках выращивания новых органов. 3D-биопринтеры уже экспериментально используются с 2006 года, а в будущем они смогут создавать трехмерные работоспособные модели биологических органов, перенося культуры клеток на биосовместимую основу.

Общий вывод

Биоинженерия как наука, целью которой является выращивание тканей и органов для их дальнейшей трансплантации, зародилась не так давно. Семимильный темп, в котором она шагает по пути прогресса, характеризуется существенными достижениями, которые в будущем спасут миллионы жизней.

Выращенные из стволовых клеток кости и внутренние органы сведут на нет нужду в донорских органах, количество которых и так находится в состоянии дефицита. Уже сейчас ученые располагают множеством разработок, результаты которых пока не слишком продуктивны, но имеют огромный потенциал.

Источники:

Fb. ru Стволовые клетки — свойства, классификация, получение, выращивание и использование, стволовые клетки выращивание органов для трансплантации. » /> » /> .keyword color: red;

Стволовые клетки — свойства, классификация, получение, выращивание и использование. Общие принципы лечения стволовыми клетками

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Стволовые клетки в настоящее время представляют собой тему весьма оживленной дискуссии, ведущейся в обществе. Наверное, нет ни одного человека, который хотя бы не слышал термина «стволовые клетки». К сожалению, помимо знания этого термина, человек, как правило ничего не может сказать о том, что же такое стволовые клетки, каковы их свойства, как их получают и почему их можно использовать для лечения ряда заболеваний.

Данная ситуация сложилась потому, что подробной и емкой информации о предмете многочисленные телевизионные передачи, форумы и рекламы не предоставляют. Чаще всего информация о стволовых клетках представляется либо по типу рекламного ролика с восхвалением и возведением их в роль панацеи от всех заболеваний, либо же в передачах рассказывают о скандалах, которые, порой невероятными способами связываются все с теми же стволовыми клетками.

То есть, ситуация со стволовыми клетками подобна неким циркулирующим слухам о чем-то таинственном, но очень сильном, что может приносить огромное благо или не менее жуткое зло. Безусловно, это неправильно, и отражает только полное отсутствие объективной и комплексной информации у людей. Рассмотрим, что же такое стволовые клетки, зачем они нужны, как их получают, какими свойствами обладают и другие вопросы, так или иначе связанные с данными биологическими объектами.

Что такое стволовые клетки?

В общем виде можно сказать, что стволовые клетки – это структуры, обладающие способностью трансформироваться во взрослые и функционально активные клетки различных органов. Из стволовых клеток может вырасти и сформироваться и клетка печени (гепатоцит), и почки (нефроцит), и сердца (кардиомиоцит), и сосуда, и кости, и хряща, и матки, и яичника и т. д. То есть, по своей сути, стволовые клетки – это своеобразные резервные запасы, из которых по мере необходимости будут формироваться новые клетки различных органов взамен погибших или поврежденных.

Однако такое определение стволовых клеток очень общее, поскольку отражает только главную характерную черту данного типа клеток, помимо которой имеется множество других свойств, определяющих их разновидности. Чтобы ориентироваться в вопросе стволовых клеток и иметь о них относительно полное представление, необходимо знать эти их характерные свойства и разновидности.

Свойства и разновидности стволовых клеток

Потентность

Потентность – это строго ограниченная способность стволовой клетки превращаться в определенные виды клеток различных органов. Чем большее количество видов клеток может образоваться из стволовой, тем выше ее потентность. Например, из фибробласта (стволовая клетка соединительной ткани) могут образовываться сосуды, жировые клетки, клетки кожи, хрящей, волос и ногтей, а из мезенхимальной стволовой клетки способны сформироваться кардиомиоциты, мышечные волокна и т. д. То есть, каждая стволовая клетка, на самом деле, имеет возможность превращаться только в ограниченный спектр клеток, которые обладают некоторыми общими свойствами и функциями. Например, мезенхимальная стволовая клетка не сможет превратиться в клетку кожи или волос.

В связи с такими ограничениями потентности выделены следующие виды стволовых клеток:

    Тотипотентные – способны превращаться в клетки всех без исключения органов и тканей; Полипотентные (мультипотентные) – способны превращаться в клетки нескольких видов органов или тканей, имеющих общее эмбриональное происхождение; Монопотентные – способны превращаться только в разновидности клеток какого-либо одного органа.

Тотипотентные или эмбриональные стволовые клетки

Тотипотентностью обладают только стволовые клетки эмбриона человека вплоть до 8-ого деления. То есть, зигота (оплодотворенная яйцеклетка) и формирующийся из нее эмбрион вплоть до того момента, пока он не будет состоять из 256 клеток. Все клетки эмбриона, пока он достигнет размера 256 клеток, и зигота, по сути, являются стволовыми. В обычных условиях получить эмбриональные клетки, обладающие тотипотентностью, очень сложно, поскольку зигота начинает делиться еще в маточной трубе, а после трансплантации в матку она уже больше 256 клеток. То есть, когда женщина узнает о беременности, зародыш уже больше 256 клеток, и, следовательно, они не обладают тотипотентностью.

В настоящее время тотипотентные стволовые клетки получают только в лабораторных условиях, производя оплодотворение яйцеклетки сперматозоидом и выращивая эмбрион до нужного размера. Эмбриональные тотипотентные клетки используются в основном для экспериментов на животных и для выращивания искусственных органов.

Полипотентные стволовые клетки

Мезенхимальные стволовые клетки

Нервные стволовые клетки

Гемопоэтические стволовые клетки

В настоящее время полипотентные стволовые клетки используются в практической медицине довольно часто, как с целью лечения тяжелых заболевания (например, сахарного диабета, рассеянного склероза, болезни Альцгеймера и т. д.), так и омоложения. Получают полипотентные стволовые клетки из органов абортированных эмбрионов не старше 22 недели гестации. При этом стволовые клетки разделяют в зависимости от того органа, из которого они получены, например, печеночные, мозговые, кровяные и др. Наиболее часто используются клетки фетальной (эмбриональной) печени, поскольку они обладают наиболее универсальной потентностью, необходимой для лечения заболеваний различных органов, например, циррозов печени, инфаркта миокарда и т. д. Мультипотентные стволовые клетки, полученные из органов эмбрионов, также часто называют фетальными. Это название образовано от слова «фетус», которое в переводи с латинского означает плод, эмбрион.

Монопотентные стволовые клетки

После 22 недели гестации все стволовые клетки плода становятся монопотентными и закрепляются за органами и тканями. Монопотентность означает, что клетка может превратиться только в специализированные клетки того органа, в котором она находится. Например, стволовая клетка печени может превратиться только в клетки печеночных протоков или в клетки, образующие желчь, обезвреживающие токсины и т. д. Но весь ее спектр возможных превращений ограничивается только разновидностями клеток печени. Такая монопотентная клетка печени уже не сможет превратиться в клетку селезенки, сердца или любого другого органа в отличие от полипотентной. А закрепленность клеток означает, что они находятся только в этом органе и уже никогда не смогут перейти в другой.

Ребенок рождается уже именно с такими монопотентными стволовыми клетками, которые имеются в каждом органе и ткани без исключения, составляя своеобразный резерв. Из этого резерва в течение жизни образуются новые клетки каждого органа и ткани взамен поврежденных и умерших. В течение всей жизни такие стволовые клетки постепенно расходуются, но даже к моменту смерти человека от старости они еще имеются во всех органах и тканях.

Это означает, что теоретически из органов и тканей ребенка или взрослого человека можно получить только монопотентные стволовые клетки. Такие клетки обычно называют по органу, из которого они были получены, например, нервные, печеночные, желудочные, жировые, костные и т. д. Однако в костном мозгу даже взрослого человека имеется два вида полипотентных стволовых клеток – кровяная и мезенхимальная, которые в настоящее время достаточно просто получить рутинными лабораторными методиками. Для лечения различных заболеваний и омоложения чаще всего используются именно эти кровяные и мезенхимальные полипотентные стволовые клетки, полученные из костного мозга.

Пролиферация и дифференцировка стволовых клеток

Помимо перечисленного свойства потентности, каждая стволовая клетка характеризуется степенью дифференцировки и способностью к пролиферации. Рассмотрим, что означают термины пролиферация и дифференцировка.

Пролиферацией называется способность клетки делиться, то есть, размножаться. Дело в том, что каждая стволовая клетка в процессе превращения в специализированные клеточные структуры каких-либо органов и тканей проходит не только процесс созревания, но и несколько раз делится. Причем деление происходит на каждом очередном этапе созревания. То есть, из одной стволовой клетки получается от нескольких штук до нескольких сотен готовых зрелых клеток какого-либо органа или ткани.

Дифференциация – это степень узкой специализированности клетки, то есть, наличие у нее строго определенной функции, для выполнения которой они созданы. Например, узкоспециализированные клетки сердечной мышцы (кардиомиоциты) созданы только для выполнения сокращений, при помощи которых производится выталкивание крови и обеспечение ее циркуляции по организму. Соответственно, клетки, имеющие свои специализированные функции, называются высокодифференцированными. А относительно универсальные клетки, не имеющие специфических функций, являются низкодифференцированными. В норме в организме человека все клетки органов и тканей являются высокодифференцированными, а к низкодифференцированным относят только монопотентные стволовые клетки. Данные клетки не имеют специфических функций, и потому являются низкодифференцированными.

Процесс превращения стволовой клетки в специализированную, обладающую четкими и определенными функциями, называется дифференцировкой, в ходе которой она превращается из низкодифференцированной в высокодифференцированную. В процессе дифференцировки стволовая клетка проходит многочисленные этапы, на каждом из которых она делится. Соответственно, чем ниже дифференциация стволовой клетки, тем большее количество этапов ей придется пройти в процессе дифференцировки, и тем большее количество раз она будет делиться.

Исходя из этого можно сформулировать следующее простое правило: чем выше потентность клетки, то есть, чем ниже степень дифференцировки, тем сильнее ее способность к пролиферации. Значит, самые низкодифференцированные тотипотентные стволовые клетки обладают наибольшей способностью к пролиферации. И поэтому из одной тотипотентной стволовой клетки образуется несколько тысяч специализированные и высокодифференцированных клеток различных органов и тканей. А самые высокодифференцированные монопотентные стволовые клетки обладают минимальной способностью к пролиферации. Поэтому из одной монопотентой клетки образуется всего несколько высокодифференцированных клеток какого-либо органа или ткани.

Типы стволовых клеток различных органов

Стволовые клетки мозга

Стволовые клетки мозга относят к нервным полипотентным, то есть, из них могут сформироваться и образоваться любые клеточные структуры нервной системы любого органа или ткани. Например, из стволовых клеток мозга могут образоваться нейроны извилин, структуры спинного мозга, нервные волокна, чувствительные и двигательные рецепторы, проводящая система сердца и т. д. В общем любая нервная клетка в любой части тела человека может сформироваться из мозговой полипотентной стволовой клетки.

Данный вид клеток обычно используют для лечения нейродегенеративных заболеваний и травматических повреждений нервов, таких, как например инсульты, рассеянный склероз, болезнь Альцгеймера, размозжение тканей, парезы, параличи, ДЦП и т. д.

Стволовые клетки печени

Стволовые клетки печени получают из соответствующего органа плодов на сроках 18 – 22 недели беременности. Данный вид стволовых клеток также называется фетальным. Получить печеночные стволовые клетки у менее зрелых эмбрионов технически практически невозможно ввиду их очень маленького размера и отсутствия у них сформировавшейся печени.

Из печени плодов получают два вида полипотентных стволовых клеток – гемопоэтические и мезенхимальные. На первом этапе получают смесь обоих видов полипотентных стволовых клеток, а затем при необходимости их разделяют. Наибольшей ценностью обладают именно мезенхимальные фетальные клетки, поскольку из них можно вырастить полноценные и функционально активные клетки различных внутренних органов, таких, как легкие, сердце, печень, селезенка, почки, матка, мочевой пузырь, желудок и т. д. В настоящее время в пробирках успешно выращивают клетки практически всех органов, добавляя в питательную среду специальные вещества, заставляющие их дифференцироваться в заданном направлении. Например, для выращивания кардиомиоцита (клетка сердца) в питательную среду добавляют 5-азацитидин, а для получения всех остальных специализированных видов клеток органов – необходимы другие химические вещества. Причем для образования клетки каждого конкретного органа необходимо добавлять в питательные среды строго определенное соединение.

Фетальные печеночные стволовые клетки используются для лечения различных тяжелых, хронических заболеваний внутренних органов, таких, как циррозы, инфаркты, недержание мочи, туберкулез легких, сахарный диабет и т. д.

Стволовые клетки из пуповинной крови

Как понятно из названия, стволовые клетки данного вида получают из пуповинной крови новорожденного младенца. В этом случае также, как и из фетальной печени, получают два вида полипотентных стволовых клеток – гемопоэтические и мезенхимальные. Причем большая часть стволовых клеток, выделенных из пуповинной крови, является гемопоэтическими.

Гемопоэтические клетки могут превращаться в любые клеточные кровяные элементы (тромбоциты, лейкоциты, эритроциты, моноциты и лимфоциты) и способствовать росту сосудов. Небольшой процент гемопоэтических стволовых клеток может превращаться в клетки кровеносных и лимфатических сосудов.

В настоящее время стволовые клетки пуповинной крови чаще всего используются для омоложения или лечения различных тяжелых, хронических заболеваний. Кроме того, многие женщины принимают решение о сборе пуповинной крови и выделении стволовых клеток для дальнейшего хранения в криобанке, чтобы можно было воспользоваться готовым материалом при необходимости.

Наиболее часто применяемая классификация стволовых клеток

Получение стволовых клеток

Источниками для получения стволовых клеток являются следующие биологические субстраты:

    Пуповинная кровь новорожденного младенца; Костный мозг ребенка или взрослого человека; Периферическая кровь (из вены) после специальной стимуляции; Абортивный материал, полученный от женщин на 2 – 12 неделях беременности; Плоды на сроках 18 – 22 недели беременности, которые умерли в результате преждевременных родов, позднего выкидыша или аборта по социальным показаниям; Ткани недавно умерших здоровых людей (например, смерть наступила в результате травмы и т. д.); Жировая ткань взрослого человека или ребенка; Оплодотворение в пробирке яйцеклетки сперматозоидом с образованием зиготы.

Наиболее часто стволовые клетки получают из пуповинной крови, костного мозга или абортивного материала. Остальные способы получения стволовых клеток используются исключительно для исследовательских целей.

Получение стволовых клеток из пуповинной и периферической крови, а также костного мозга производится при помощи одних и тех же методов. Для их получения, во-первых, забирают костный мозг (от 20 до 200 мл) в ходе пункции подвздошной кости у взрослых людей или грудины у детей. Периферическую кровь забирают из вены так же, как для переливания. А пуповинную кровь просто собирают в стерильную пробирку прямо в родильном доме, подставив ее под перерезанную пуповину младенца.

Затем кровь или костный мозг транспортируют в лабораторию, где из них выделяют стволовые клетки одним из двух возможных методов. Чаще всего применяют разделение в градиенте плотности фиколл-урографина. Для этого в пробирку наливают слой фиколла, затем поверх него аккуратно наливают урографин так, чтобы растворы не перемешались. И наконец на поверхность урографина также аккуратно наслаивают кровь или костный мозг, стараясь, чтобы он минимально смешался с двумя предыдущими растворами. Затем пробирку откручивают в центрифуге на высокой скорости не менее 8 000 оборотов в минуту, в результате чего на границе раздела фаз фиколла и урографина уплотняется и концентрируется тонкое кольцо стволовых клеток. Это кольцо аккуратно собирают пипеткой в другую стерильную пробирку. Затем в нее наливают питательную среду и еще несколько раз откручивают на центрифуге, чтобы удалить все случайно попавшие в кольцо нестволовые клетки. Готовые стволовые клетки или помещают в питательную среду для дальнейшего выращивания (культивирования), или замораживают в жидком азоте для длительного хранения, или разбалтывают в физиологическом растворе и вводят в виде инъекции человеку, проходящему курс клеточной терапии.

Вторым, менее распространенным методом получения стволовых клеток является обработка крови или костного мозга лизирующим буфером. Лизирующий буфер – это специальный раствор со строго подобранными концентрациями солей, которые вызывают гибель всех клеток, кроме стволовых. Для выделения стволовых клеток кровь или костный мозг смешивают с лизирующим буфером и оставляют на 15 – 30 минут, после чего откручивают на центрифуге. Собравшийся на дне пробирки шарик и есть стволовые клетки. Всю жидкость, находящуюся над шариком клеток сливают, в пробирку заливают питательную среду и еще несколько раз откручивают на центрифуге, чтобы удалить все случайно попавшие ненужные клетки. Готовые стволовые клетки используют так же, как и полученные методом разделения на градиенте плотности фиколл-урографина.

Получение стволовых клеток из абортивного материала, тканей умерших людей или жира живых взрослых или детей является более трудоемкой процедурой, которую используют только хорошо оснащенные лаборатории или научные учреждения. В ходе выделения клеток производится обработка материала специальными ферментами, которые разрушают целостность тканей и превращают их в одну аморфную массу. Данную массу по частям обрабатывают лизирующим буфером и далее выделяют стволовые клетки так же, как и из крови или костного мозга.

Стволовые клетки из плодов 18 – 22 недель беременности получить так же просто, как и из крови или костного мозга. Дело в том, что стволовые клетки в данном случае получают не из всего плода, а только из печени, селезенки или головного мозга. Ткани органов измельчают механически, после чего разбалтывают в физиологическом растворе или питательной среде. Затем получают стволовые клетки либо при помощи лизирующего буфера, либо разделением на градиенте плотности фиколл-урографина.

Получение стволовых клеток методом оплодотворения яйцеклетки используется только в научных учреждениях. Этот метод доступен только высококвалифицированным ученым — клеточным биологам. Обычно таким образом получают эмбриональные стволовые клетки для экспериментальных исследований. А яйцеклетки и сперматозоиды забирают у здоровых женщин и мужчин, согласившихся стать донорами. За такое донорство научные учреждения выплачивают весьма ощутимое вознаграждение – не менее 3 – 4 тысяч долларов за порцию спермы мужчины и несколько яйцеклеток женщины, которые удастся забрать в ходе одной пункции яичника.

Выращивание стволовых клеток

Термин «выращивание» стволовых клеток не совсем правильный, однако его вполне можно использовать для обиходной речи. Ученые обычно для описания данной процедуры используют термин «культивирование стволовых клеток». Культивация или выращивание стволовых клеток – это процесс поддержания их жизни в специальных растворах, содержащих питательные вещества (питательных средах).

В ходе культивации количество стволовых клеток постепенно увеличивается, вследствие чего каждые 3 недели содержимое одного флакона с питательной средой разделяют на 2 или 3. Такая культивация стволовых клеток может производиться сколько угодно долго, если имеется необходимое оборудование и питательные среды. Однако на практике стволовые клетки не удается размножить до большого количества, поскольку очень часто происходит их заражение различными патогенными микробами, попавшими случайно в воздух лабораторного помещения. Такие зараженные стволовые клетки использовать и культивировать уже нельзя, и их просто выбрасывают.

Следует помнить, что выращивание стволовых клеток – это всего лишь увеличение их количества. Невозможно вырастить стволовые клетки из нестволовых.

Обычно стволовые клетки культивируют до тех пор, пока их число не окажется достаточным для выполнения лечебной инъекции или постановки эксперимента. Также клетки могут культивировать перед замораживанием в жидком азоте, чтобы запас был побольше.

Отдельно стоит сказать о специальной культивации стволовых клеток, когда в питательную среду добавляют различные соединения, которые способствуют дифференцировке в определенный тип клеток, например, кардиомиоциты или гепатоциты и т. д.

Использование стволовых клеток

В настоящее время использование стволовых клеток делится на три сферы – это экспериментальные исследования, лечение различных заболеваний и омоложение. Причем сфера экспериментальных исследований занимает не менее 90% общего пула использования стволовых клеток. В ходе экспериментов врачи-биологи изучают возможность перепрограммирования и расширения потентности клеток, способы их превращения в различные специализированные клетки различных органов, методы выращивания целых органов и т. д. В экспериментальной сфере использования стволовых клеток прогресс идет буквально семимильными шагами, поскольку каждый день ученые сообщают о новых достижениях. Так, уже были выращены нормально функционирующие сердце и печень из стволовых клеток. Правда эти органы не пробовали кому-либо пересаживать, но это произойдет уже в обозримом будущем. Соответственно, решится проблема донорских органов для людей, которым требуется трансплантация. Уже реальностью является использование клапанов сосудов и сердца, выращенных из стволовых клеток, для протезирования.

Использование стволовых клеток для лечения различных заболеваний проводится в рамках ограниченных клинических испытаний, когда больному предлагается данный вариант и объясняется, какие положительные моменты и риски это может повлечь. Обычно стволовые клетки применяют только для терапии тяжелых, хронических и неизлечимых другими методами заболеваний, когда шансов на выживание и хоть небольшое улучшение состояния практически нет. Благодаря таким клиническим испытаниям врачи получают возможность видеть, каковы эффекты стволовых клеток, и какие побочные действия может вызывать их использование. На основании результатов наблюдений разрабатываются наиболее безопасные и эффективные клинические протоколы, в которых прописываются рекомендованные дозировки стволовых клеток (общее вводимое количество в штуках), места и способы введения, а также оптимальные сроки терапии и ожидаемые эффекты.

С целью омоложения стволовые клетки могут вводить в подкожную клетчатку или в структуры кожи, а также внутривенно. Такое применения стволовых клеток позволяет уменьшить видимые признаки возрастных изменений на некоторый промежуток времени. Для поддержания длительного эффекта стволовые клетки придется вводить периодически через индивидуально подобранные интервалы. В принципе, данная манипуляция при правильном выполнении является безопасной.

Лечение стволовыми клетками различных заболеваний – общие принципы и эффекты

Для лечения различных заболеваний чаще всего используют стволовые клетки, полученные из костного мозга самого пациента. Для этого сначала в ходе пункции забирают необходимый объем костного мозга (от 20 мл до 200 мл), из которого в специализированной лаборатории выделяют стволовые клетки. Если их недостаточно, то производится культивирование до тех пор, пока клетки не размножатся до необходимого количества. Также поступают, если планируют сделать несколько введений стволовых клеток на курс лечения. Культивация позволяет получить необходимое количество стволовых клеток без повторных пункций костного мозга.

Кроме того, достаточно часто применяют стволовые клетки из костного мозга донора, в качестве которого обычно выступают кровные родственники. В таком случае для устранения риска отторжения перед введением клеток их культивируют на питательной среде минимум 21 день. Такая длительная культивация приводит к потере индивидуальных антигенов, и клетки уже не будут вызывать реакции отторжения.

Реже используют стволовые клетки печени, поскольку их необходимо покупать. Чаще всего данный вид клеток используют для омоложения.

Готовые стволовые клетки вводят в организм различными способами. Причем введение стволовых клеток называется трансплантацией, которая производится различными путями в зависимости от заболевания. Так, при болезни Альцгеймера стволовые клетки трансплантируют в спинномозговую жидкость при помощи люмбальной пункции. При заболеваниях внутренних органов клетки трансплантируются следующими основными способами:

    Внутривенное введение стволовых клеток, разболтанных в стерильном физиологическом растворе; Введение стволовых клеток в сосуды пораженного органа при помощи специального оборудования; Введение стволовых клеток непосредственно в пораженный орган в ходе оперативного вмешательства; Введение стволовых клеток внутримышечно в непосредственной близости от пораженного органа; Введение стволовых клеток подкожно или внутрикожно.

Чаще всего клетки вводят внутривенно. Но в каждом конкретном случае метод выбирается врачом, исходя из общего состояния человека и желаемого эффекта.

Клеточная терапия (лечение стволовыми клетками) во всех случаях приводит к улучшению состояния человека, частично восстанавливает утраченные функции, повышает качество жизни, уменьшает скорость прогрессирования заболевания и развития осложнений.

Однако следует помнить, что лечение стволовыми клетками не является панацеей, оно не сможет исцелить полностью или отменить традиционной терапии. На современном этапе развития науки стволовые клетки могут использоваться только в качестве дополнения к традиционной терапии. Когда-нибудь, возможно, будут разработаны способы лечения только при помощи стволовых клеток, но сегодня это мечта. Поэтому принимая решение об использовании стволовых клеток, помните, что отменять всю остальную терапию тяжелого хронического заболевания нельзя. Трансплантация клеток только улучшит состояние и повысит эффективность традиционной терапии.

Лечение стволовыми клетками: основные проблемы — видео

Стволовые клетки: история открытия, виды, роль в организме, получение и особенности лечения — видео

Банк стволовых клеток

Банк стволовых клеток – это специализированная лаборатория, оснащенная оборудованием для их получения и длительного хранения в жидком азоте. В банках стволовых клеток можно хранить пуповинную кровь или собственные клетки, оставшиеся от какой-либо манипуляции. Каждый банк стволовых клеток имеет свои расценки на услуги, которые могут существенно отличаться. Однако рекомендуется выбирать такую организацию не по прайс-листу, а по профессионализму сотрудников и степени оснащенности оборудованием.

В настоящее время практически во всех крупных городах России имеются подобные банки, которые предлагают свои услуги физическим и юридическим лицам.

Автор: Наседкина А. К. Специалист по проведению исследований медико-биологических проблем.

Источники:

Www. tiensmed. ru Когда начнут выращивать органы из стволовых клеток — Сад и огород, стволовые клетки выращивание органов для трансплантации. » /> » /> .keyword color: red;

Когда начнут выращивать органы из стволовых клеток

В отрасли пересадки органов ожидается революция

Ученый-медик за работой

Уже много лет ученые всего мира работают над созданием работающих тканей и органов из клеток. Чаще всего практикуется выращивание новых тканей из стволовых клеток. Эта технология отрабатывается уже много лет и стабильно приносит успехи. Но полностью обеспечить необходимое количество органов пока невозможно, так как вырастить орган для конкретного пациента можно только из его стволовых клеток.

Ученым из Великобритании удалось то, что до сих пор не получалось никому – перепрограммировать клети и вырастить из них работающий орган. Это позволит в обозримом будущем обеспечить органами для пересадки всех, кому это будет необходимо.

Выращивание органов из стволовых клеток

Выращивание органов из стволовых клеток знакомо медикам уже давно. Стволовые клетки являются прародительницами всех клеток организма. Они могут заменить собой любые поврежденные клетки и предназначаются для восстановления организма. Максимальное количество этих клеток бывает у детей после рождения, а с возрастом их количеством снижается. Поэтому постепенно возможности организма к самовосстановлению снижаются.

Создание органов из клеток — сложный и дорогой процесс

В мире создано уже немало полноценно функционирующих органов из стволовых клеток, например, в 2004-и в Японии создали из них капилляры и кровеносные сосуды. А в 2005-м американским ученым удалось создать клетки головного мозга. В 2006-м в Швейцарии были созданы клапаны человеческого сердца из стволовых клеток. В том же 2006-м в Британии создали ткани печени. До сегодняшнего дня ученые имели дело практически со всеми тканями организма, выращивали даже зубы.

Очень любопытный эксперимент был проведен в США – там вырастили новое сердце на каркасе от старого. Донорское сердце очистили от мышц и нарастили новые мышцы из стволовых клеток. Это полностью исключается возможность отторжения донорского органа, так как он становится «своим». Кстати, есть предположения, что в качестве каркаса, можно будет использовать сердце свиньи, которое анатомически очень похоже на человеческое.

Новый способ выращивания органов для пересадки (Видео)

Главный недостаток существующего метода выращивания органов – необходимость для их производства собственных стволовых клеток пациента. Далеко не у каждого пациента можно забрать стволовые клетки и тем более не у всех есть готовые замороженные клетки. Но недавно иСследователям из Университета Эдинбурга удалось перепрограммировать клетки организма таким образом, чтобы они позволяли выращивать из них необходимые органы. По прогнозам широкое применение данной технологии станет возможным примерно через 10 лет.

На сегодняшний день ученым уже удалось создать полноценно работающую вилочковую железу, которая регулирует работу иммунной системы и располагается рядом с сердцем. Сделали данный орган из клеток просо соединительной ткани, которая была получены из эмбриона мыши. Клетки соединительной ткани пересадили в другую клеточную культуру благодаря специальному «генетическому переключателю» в ДНК.

До сегодняшнего дня эксперименты по выращиванию органов таким способом не приносили ощутимых результатов. Это первый удачный эксперимент, который показал, что есть возможность вырастить нужный орган даже без использования стволовых клеток, а при помощи любых других клеток организма, например, клеток соединительных тканей.

Хирурги научились восстанавливать органы для пересадки: спасение для миллионов

Трансплантация не просто тканей, а целых органов — это чудо современной медицины. Увы, в настоящее время по всему миру существует жесткая нехватка донорского материала: примерно 20 человек ежедневно умирают лишь потому, что до них так и не дошла очередь на пересадку. Ученые из Гарвардской медицинской школы считают, что они могут решить эту проблему, опираясь на органы свиней и других животных. Они уверены, что могут подарить старым органам и их новым владельцам полноценную жизнь.

Хирург Харальд Отт (Harald Ott) и его команда разработали метод, в процессе которого органы животных выполаскиваются в специальном моющем средстве, после чего от них остается лишь тканевый каркас. Этот каркас, благодаря посеву на него стволовых клеток человека, может быть использован в качестве импланта: таким образом медики предотвращают отторжение тканей, а потому нет необходимости тратиться на антиретровирусные препараты. Пока клетки растут, их жизнедеятельность поддерживает биореактор, насыщающий ткани кислородом и стимулирующий их деятельность — фактически, устройство имитирует работу органа в здоровом теле.

Bernhard Jank, Ott Lab Донорское сердце с посевом стволовых клеток, культивируемое в биореакторе

Команда уже успешно восстановила легкие, почки, сердца и части кишечника у крыс и свиней, после чего пересадила органы обратно животным. Хотя человеческие клетки, помещенные в ткани, в теории должны были сделать органы непригодными для их прежних владельцев, они все же работали! Помимо этого, ученые успешно реанимировали мышечные ткани в сердцах, извлеченных из человеческих трупов. «Когда ваш iPhone разбивается, а его батарея ломается, вы просто заменяете ее. В этом направлении движется и медицина», поясняет Отт в интервью Wall Street Journal. Он говорит, что задача трансплантологов состоит в том, чтобы сделать процедуру универсальной: в идеале хирург должен просто взять орган, сделать его совместимым с конкретным пациентом, а потом пересадить его в организм.

По оценкам Харальда, уйдет примерно 10 лет на то, чтобы провести все необходимые исследования и перейти к практике пересадки обновленных органов людям. Отт входит в обширную группу ученых, стремящихся улучшить процесс трансплантации. В настоящее время они исследуют самые разнообразные тактики, от редактирования генов в организме пациента до 3D-печати новых органов из «органических чернил». Судя по всему, спустя десятилетие трансплантология и в самом деле сделает большой шаг вперед.

Пересадка органов – выращивание органов для человека

Современная медицина может творить настоящие чудеса. С каждым годом ученые находят все новые и новые методы терапии различных патологических состояний, и особенный интерес представляют собой новейшие технические достижения. Врачи уверены, что совсем скоро им удастся лечить болезни на расстоянии, проходить диагностику всего организма за считанные минуты и предупреждать заболевания с использованием современных компьютерных технологий. И такая казалось бы фантастика, как выращивание органов человека для пересадки, понемногу становится реальностью.

На сегодняшний день ученые ведут множество активных разработок и исследований, которые касаются органов человеческого тела. Наверное, каждый из нас слышал, что в современном мире огромное количество людей нуждается в пересадке органов или тканей, и никакие объемы донорских материалов не могут покрыть эту потребность. Поэтому ученые не первый год занимаются разработкой технологий, которые позволяют справиться с такой ситуацией. И на сегодняшний день продолжается активная разработка метода «выращивания» органов. В качестве исходного материала при этом используют стволовые клетки организма, способные адаптироваться под особенности любого органа.

Искусственное выращивание органов человека

На сегодняшний день уже изобретено несколько технологий для активного выращивания органов из стволовых клеточек. Еще в 2004 году ученым удалось создать полностью функциональные капиллярные сосуды. А в 2005 году были выращены полноценные клеточки головного мозга и нервной системы. В 2006 году швейцарским медикам удалось вырастить клапаны сердца, а британским – клеточки тканей печени. В том же году американцы создали полноценный орган – мочевой пузырь, а в 2007 году была получена роговица глаза. Еще через год ученым удалось вырастить новое сердце, используя в качестве основы каркас старого. Для такого научного эксперимента использовалось сердце взрослой крысы, которое поместили в особенный раствор, удаливший из органа все мышечные ткани. Далее полученный каркас засеяли клетками сердечной мышцы, полученными от новорожденной крысы. Уже спустя две недели орган стал способен перекачивать кровь.

На сегодняшний день многие медики уверены, что в скором времени трансплантация уже не будет дорогостоящей операцией для избранных, для получения органа нужна будет лишь символическая плата.

Так за последние несколько лет было проведено ряд оперативных вмешательств по пересадке искусственно выращенной трахеи, на которую были нанесены собственные клеточки пациента, выделенные из костного мозга. Благодаря таким клеткам организм рецепиента не отторгает пересаженный орган, он нормально приживается и сам подстраивается под новые условия. Такая операция позволяет пациентам вновь самостоятельно дышать и говорить.

Выращивание человеческих органов для трансплантации другим методом

Еще одним современнейшим достижением науки можно назвать 3d-печать органов. Подобная чудесная методика осуществляется при помощи специальной биохимической машины. Самые первые опыты проводились на классических струйных принтерах. Учеными было выяснено, что клеточки человеческого организма имеют такой же размер, как и капли стандартных чернил. Если перевести эти данные на цифры получится размер в 10 микрон. А при биопечати девяносто процентов клеточек остаются жизнеспособными.

На сегодняшний день специалистам удалось напечатать ушные раковины, сердечные клапаны, а также сосудистые трубки. Кроме всего прочего 3d-принтер позволяет создать костные ткани, и даже кожу, подходящую для дальнейшей пересадки.

Печать органов проводится при помощи специального фоточувствительного гидрогеля, особенного порошкового наполнителя либо жидкости. Рабочий материал подают из дозатора покапельно или постоянной струей. Так создаются мягкие либо хрящевые ткани. Для получения костного импланта проводят послойное наплавление полимеров, имеющих натуральное происхождение.

Британские ученые вплотную занялись проблемами стоматологии, точнее ортодонтии. На сегодняшний день медики активно разрабатывают технологию восстановления утраченных зубов – при этом подразумевается, что зуб будет выращиваться самостоятельно непосредственно в ротовой полости пациента.

Поначалу стоматологи будут создавать «зачаток зуба» — используя эпителий десны и стволовые клетки. Такая манипуляция проводится в пробирке. После клетки подвергаются стимуляции особенным импульсом, который заставит их превратиться в нужный тип зуба. Затем такой зачаток, находясь в пробирке, формируется. Лишь после этого его помещают внутрь ротовой полости. Там он имплантируется и достигает нужного размера самостоятельно.

Итак, на сегодняшний день нет ни одной разновидности биологических тканей, которые бы не попробовала выращивать современная наука. Но, несмотря на достигнутые успехи, заменить жизненно важные органы человека искусственно выращенными аналогами пока невозможно – это дело будущего.

Народные лекарства помогут избежать необходимости пересадки органов. Они могут использоваться для лечения самых разных патологических состояний, в том числе и опасной почечной недостаточности, которая часто требует трансплантации почки.

При таком патологическом состоянии знахари советуют соединить равные доли измельченных листиков брусники, семян льна, цветков календулы и травки трехцветной фиалки. Пару столовых ложек полученного сбора заварите одним литром кипящей воды. Проварите такое средство десять минут на огне минимальной мощности, после перелейте в термос на двенадцать часов. Процеженный напиток принимайте по четверти-половинке стакана трижды на день примерно за час до трапезы.

Целесообразность применения народных средств нужно обязательно обсудить с врачом.

Выращенный из стволовых клеток орган впервые пересажен пациенту

Испанские хирурги провели первую в мире трансплантацию целого органа, выращенного из стволовых клеток пациента. 30-летняя Клаудия Кастильо (Claudia Castillo) получила биоинженерную трахею, которая для её организма фактически оказалась своей. Данное достижение на практике показало, как пересадка целых тканей может быть проведена без необходимости в дальнейшем приёме иммунодепрессантов.

Трахея Клаудии была повреждена после туберкулёза (а корректнее сказать — участок после её разветвления — левый бронх). Международная группа биологов и медиков провела уникальную операцию по спасению лёгкого этой женщины.

В университете Бристоля (University of Bristol) для неё вырастили новый орган. Для этого учёные взяли трахею от недавно умершего человека и поместили её в специальный раствор, который удалил все клетки. От донорского органа остался только инертный каркас из коллагеновых волокон.

Эта основа послужила строительными лесами для нового органа, выращенного из клеток, взятых у Клаудии. Клетки были двух типов: от внутреннего слоя трахеи женщины и стволовые — из костного мозга. После четырёх дней роста в лаборатории новый «воздуховод» был готов к пересадке.

Операцию провёл профессор Паоло Маккиарини (Paolo Macchiarini) из госпиталя Барселоны (Hospital Clínic de Barcelona).

«Мне было очень страшно. До этого мы делали такую работу только на свиньях, — заявил хирург. — Но как только донорская трахея была извлечена из биореактора, мы увидели весьма позитивный сюрприз. Она выглядела и вела себя сходно с нормальной человеческой донорской трахеей».

Пересадка была выполнена в июне нынешнего года. Через четыре дня, говорят специалисты, трахея прижилась настолько, что её сложно было отличить от соседних участков дыхательных путей. А уже через месяц она вырастила собственную сеть кровоснабжения.

Теперь же, через пять месяцев, медики рапортуют, что состояние пациентки — хорошее, никаких признаков отторжения не выявлено. Клаудия вновь ухаживает за своими детьми и может подняться по лестнице не запыхавшись.

Возвращение к активному образу жизни — главный подарок и авторам сенсационной работы, и, конечно, самой Кастильо. По словам Маккиарини, и в будущем вероятность отторжения нового органа равна нулю. Так что эта пионерская операция открывает заманчивые перспективны для лечения целого ряда заболеваний.

Как утверждает один из участников эксперимента, профессор хирургии Мартин Бирчалл (Martin Birchall) из Бристоля, в течение 20 лет по такой технологии люди научатся выращивать практически все трансплантируемые ныне органы.

Проводившая необычное лечение Кастильо международная группа учёных, также включающая в себя специалистов из университета Падуи (Università degli Studi di Padova) и Миланского политеха (Politecnico di Milano), намерена в будущем провести аналогичные операции по трансплантации трахей и даже гортаней у раковых пациентов. Такие клинические испытания могут начаться в течение пяти лет.

Читайте о результатах многолетнего испытания трансплантированного мочевого пузыря, полученного культивацией специализированных клеток, взятых из соответствующего органа больного, а также о свежем прорывном опыте по выращиванию функционирующих тканей головного мозга из стволовых клеток.

Источники:

Www. ogoroddoma. ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *